MIT, Samsung Research Boosts Battery Capcacity With Solid Electrolyte

Scientists at MIT and Samsung say they have come up with a new way of engineering rechargeable batteries that could greatly improve capacity and prolong battery life by using solid materials instead of the liquid electrolytes typically found in today’s devices.

Their research, published in the journal Nature Materials, finds that an approach using solid materials could improve capacity by 20 to 30 percent, while such a battery could last through “hundreds of thousands of cycles”, according to MIT.

With the dramatic expansion of mobile devices, including portable electronics such as smartphones, laptops and tablets, researchers have focused their efforts increasingly on ways to improve battery life and capacity.

Aside from usability issues, the question also involves the waste generated by batteries that have reached the end of their usable life, as well as safety issues illustrated by incidents of batteries overheating and catching fire.

MIT said the team of seven researchers is the first to demonstrate that solid materials can be used in a formulation that meets the needs of battery applications. They illustrated their findings with a class of materials known as superionic lithium-ion conductors, but the research could lead to even more effective materials, MIT said.

The research demonstrated that such solid materials are capable of carrying ions, or charged particles, from one electrode to the other fast enough for use in rechargeable batteries of the kind common today, MIT said.

“There was a view that solids cannot conduct fast enough,” said MIT visiting professor of materials science and engineering Gerbrand Ceder, one of the paper’s authors, in a statement. “That paradigm has been overthrown.”

No fire risk

He said the solid electrolyte would not be inflammable and would improve power density by 20 to 30 percent, resulting in a corresponding increase in the amount of time a battery of a given size could provide power to a device.

The electrolyte would also result in batteries that would perform better than today’s lithium-ion batteries in extreme cold, MIT said.

Ceder worked with MIT postdoc Yan Wang, MIT graduate student William Richards and postdoc Jae Chul Kim, Shyue Ping Ong at the University of California at San Diego, Yifei Mo at the University of Maryland, and Lincoln Miara at Samsung. The research is part of a collaboration between MIT and Samsung’s Advanced Institute of Technology in Cambridge, Massachusetts, focusing on clean energy materials development.

Another recent MIT research paper demonstrated a new type of electrode that could triple rechargeable battery life.

In March vacuum cleaner manufacturer Dyson said it would invest $15m in a US start-up whose technology could double rechargeable battery capacity.

Do you know all about Samsung? Take our quiz!

Matthew Broersma

Matt Broersma is a long standing tech freelance, who has worked for Ziff-Davis, ZDnet and other leading publications

Recent Posts

Samsung Warns Striking Workers In India Of No Pay, Possible Termination

Industrial dispute of Samsung workers in India escalates, as tech giant warns of no pay…

11 hours ago

Ukraine Bans Telegram On State-Issued Devices

National security move. Ukraine reportedly bans Telegram on state-issued devices due to Russian security threat

14 hours ago

Brazil’s Judge Accuses X of ‘Willful’ Circumvention

X at risk of $900,000 daily fine, as Justice de Moraes calls out “willful, illegal…

15 hours ago

YouTube Confirms Ads When Screen Is Paused

Chasing the almighty dollar. Alphabet's YouTube reportedly confirms it is delivering adverts on a user's…

1 day ago