Intel Pushes For Increased Data Centre Reach

data centre

Intel’s Diane Bryant says the giant chip’s presence in the data centre segment is set to grow

Diane Bryant of Intel took control of the chip giant’s data centre business at an important time in the industry.

The rise of cloud computing, virtualisation, big data, mobility and other trends has rapidly changed the dynamics in the data centre and expanded the field of competitors in a part of the industry that has been dominated by Intel and its x86-based processors.

Data Centre Focus

Where once power was the key consideration for data centre systems and the processors that run them, a growing emphasis is now being placed on energy efficiency. And the list of competitors, which for a long time was pretty much Advanced Micro Devices, IBM and Oracle/Sun Microsystems, now includes ARM and its roster of licensees, including Calxeda, Marvell Technologies and Applied Micro.

dianebryantintelleadBut despite all that – all the changing demands and workloads in the data centre, all the evolving numbers of competitors – the one constant is Intel and its development and manufacturing capabilities, according to Bryant, who took over as senior vice president and general manager of Intel’s Datacenter and Connected Systems Group in January. Intel products can be found in servers running whatever jobs are needed, and are rapidly expanding beyond the servers and into most data centre resources, from storage systems to networking gear.

The data centre will remain Intel’s domain, she said.

“We have all the products in our product line to cover all the workloads,” Bryant said in a recent wide-ranging interview with eWEEK in Cambridge, Mass.

For years, Intel, AMD and other chip makers would release processors, system makers would put them in their servers and organisations would buy the servers and put them into their data centres. In recent years, with virtualisation and cloud computing, big data and mobility, end users are looking for systems that can handle particular workloads. Now the focus for chip makers is creating processors designed for those workloads.

Intel Response

For Intel, that means offering its Xeon chips for larger, traditional data centre tasks, and low-power Atom systems-on-a-chip (SoCs) for microservers for high-density cloud environments, storage and communications jobs. In addition, Intel’s Xeon Phi coprocessors are aimed at highly parallel workloads found in high-performance computing (HPC) environments.

It also means more competition. Not only does Intel still compete with AMD in the traditional server space, but with the Xeon Phi coprocessors, the company now vies with GPU accelerators from AMD and Nvidia. In addition, ARM, whose low-power SoCs can be found in most smartphones and tablets, and such partners as Calxeda and Marvell Technologies see an opportunity in the microserver space, particularly once chips based on its 64-bit ARMv8 architecture start coming out next year.

AMD also will begin building ARM-based server chips in 2014. Andrew Feldman, corporate vice president and general manager of AMD’s Server Business Unit, said in an interview in May that ARM could account for as much as 20 percent of the server chip market by 2016.

All Bases

Intel’s Bryant isn’t so sure. The microserver space itself is about 10 percent of the overall server market, and when ARMv8 SoCs begin hitting the market, Intel will already be on its second-generation Atom server chip, dubbed “Avoton.” In addition, Intel already offers the operating system support, middleware, developer toolkits and application support most organizations rely on. It’s also expensive to create such an ecosystem, and to be able to come out with new products on a regular basis.

“Our job is to make sure we do cover the entire spectrum,” Bryant said.