Gloyer-Taylor Laboratories, Inc. (GTL), an aerospace engineering research and development company, will showcase its industry leading hydrogen storage technology during Vertical Flight Society’s (VFS) 3rd Annual H2-Aero Symposium at SAE Aerotek in Charlotte, NC on March 13, 2024.
Recognized for a strong history of transformational innovation in the aerospace industry, GTL President Paul Gloyer will share in-depth results from the successful validation testing of its small subscale composite vacuum jacketed dewar-tank with liquid hydrogen (LH2).
The GTL composite LH2 dewar-tank test results surpassed expectations. When fully isolated, GTL’s dewar-tank held hard vacuum at 2.8.e-6 torr for ~50 minutes with LH2, which was > 100x better than the requirement. This allowed the GTL dewar-tank to hold LH2 for over 21 hours, at -430 degrees Fahrenheit, while remaining leak tight with minimal hydrogen permeation. During this test, the subscale dewar-tank experienced only 2.8 watts of heat load. Based on this, GTL expects that the flight tanks will see only 1% LH2 boiloff per day.
Results showed the composite dewar-tank’s ability for rapid chill-down, paving the way for aircraft to be refueled in minutes, versus waiting hours for a metal tank and transfer lines to cool. The inner composite tank went from ambient room temperature to 20K (degrees Kelvin) and holding liquid hydrogen in less than 20 seconds and the GTL composite tubes achieved full LH2 flow in less than 1 second. The tests also show that no-vent fills of the composite dewar-tanks are achievable, which greatly improves refueling safety.
“With these successful validation tests, we have achieved a critical milestone in aircraft decarbonization. GTL is now proceeding with the fabrication of flight prototypes of the small composite LH2 dewar-tank,” said GTL President Paul Gloyer. “Our 28-inch diameter by 53-inch long flight-type tank weighs only 15 kg, including inner tank, outer vacuum shell, multi-layer vacuum insulation, internal tubing, and sensors, but can hold 19 kg of LH2.”
This gives the GTL composite dewar-tank a hydrogen fraction (gravimetric index) of more than 55%, which is about 10x better than current hydrogen tanks. When stretched to carry 50 kg of LH2, the hydrogen fraction increases to over 62% with a mass of 30 kg, with larger versions able to achieve over 70% hydrogen fraction.
The GTL dewar-tank performance significantly exceeds the 35% hydrogen fraction goal needed for hydrogen to achieve parity with kerosene fuel (e.g., equal flight range). With GTL technology, hydrogen powered aircraft can exceed the performance of kerosene fueled aircraft, while eliminating carbon emissions and reducing cost per passenger mile by more than 25%.
Gloyer will provide more detail on the validation at his presentation on Wednesday, March 13, 2024, at 3:30 PM in room E217 ATH2 at the symposium.
About GTL
Formed in 2005, GTL is headquartered in Tullahoma, Tennessee with a second office in California. GTL specializes in providing transformational technologies to the aerospace and defense industry including composite cryogenic tanks, specialty structural composites, aircraft and space systems, combustion stability analysis, space and launch vehicle technologies. GTL is also developing high performance drones and a space vehicle. GTL has won numerous development contracts with NASA, Defense Advanced Research Projects Agency (DARPA), the U.S. Air Force, U.S. Space Force, U.S. Navy, and others. For more information or to discuss partnerships, contact GTL at https://www.gtlcompany.com/.
View source version on businesswire.com: https://www.businesswire.com/news/home/20240313965264/en/