Categories: InnovationMobility

Electrode Innovation Could Triple Laptop Battery Capacity

Researchers at MIT and China’s technology-focused Tsinghua University have developed aluminium-based nanoparticles that could triple the capacity of lithium-ion batteries – the most common type of rechargeable battery, and one commonly used in consumer electronics such as laptop computers.

The discovery, published in the journal Nature Communications, addresses a key factor in degrading the performance of lithium-ion batteries, the fact that their electrodes expand and shrink during each charging cycle, a process that consumes lithium.

The researchers said they have developed an electrode made of nanoparticles with a solid shell and a “yolk” inside that’s isolated in such a way that it can expand and contract without affecting the shell. The technique can greatly improve cycle life, as well as boosting capacity and power.

The electrode’s nanoparticles contain an aluminium yolk and a titanium dioxide shell, resulting in a component whose “skin”, or solid-electrolyte interphase (SEI) layer, is more stable, meaning it doesn’t consume lithium in the way that current batteries do, the researchers said.

“We made a titanium oxide shell that separates the aluminium from the liquid electrolyte” between the battery’s two electrodes, MIT professor Ju Li said in a statement.

‘Chance discovery’

Li, who worked with three others from MIT and three researchers from Tsinghua, said the method was a “chance discovery”.

In laboratory tests, the electrode gave more than three times the capacity of stadard batteries using graphite anodes at a normal charging rate, according to Li. The lab tests found that the battery retained a high charge capacity after hundreds of recharging cycles, he said.

Aluminium is a low-cost material and the team’s method could be easily scaled for industrial-level manufacturing, Li said. The team said it has successfully tested fuel cells using an aluminium-titania (ATO) anode, or negative electrode, with a lithium iron phosphate cathode, or positive electrode.

For high-power, high-density batteries, ANO is “probably the best anode material available”, Li said.

MIT’s Junjie Niu, Kangpyo So, and Chao Wang and Tsinghua’s Sa Li, Yu Cheng Zhao, and Chang An Wang collaborated on the research.

Do you know all about mobile operators in Britain? Take our quiz.

Matthew Broersma

Matt Broersma is a long standing tech freelance, who has worked for Ziff-Davis, ZDnet and other leading publications

Recent Posts

Northvolt Mulls US Bankruptcy Protection – Report

Troubled battery maker Northvolt reportedly considers Chapter 11 bankruptcy protection in the United States as…

2 days ago

FTC Plans Investigation Into Microsoft Cloud Business – Report

Microsoft's cloud business practices are reportedly facing a potential anti-competitive investigation by the FTC

2 days ago

Programmer Sentenced To Five Years In Prison For Bitcoin Laundering

Ilya Lichtenstein sentenced to five years in prison for hacking into a virtual currency exchange…

2 days ago

Hate Speech Watchdog CCDH To Quit Musk’s X

Target for Elon Musk's lawsuit, hate speech watchdog CCDH, announces its decision to quit X…

3 days ago

Meta Fined €798m Over Alleged Facebook Marketplace Violations

Antitrust penalty. European Commission fines Meta a hefty €798m ($843m) for tying Facebook Marketplace to…

3 days ago

Elon Musk Rebuked By Italian President Over Migration Tweets

Elon Musk continues to provoke the ire of various leaders around the world with his…

3 days ago